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Abstract

A connectionistnetwork isintroduced forfaultdiag-

nosisofhelicoptergearboxes thatincorporatesknowl-

edge of the gearbox structureand characteristicsof

the vibrationfeaturesas itsfuzzy weights. Diagnosis

is performed by propagating the abnormal features of

vibrationmeasurements through thisStructure-Based

Connectionist Network (SBCN), the outputs of which

represent the fault possibility values for individual

components of the gearbox. The performance of this
network is evaluated by applying it to experimental

vibration data from an OH-58A helicopter gearbox.

The diagnostic results indicate that the network per-

formance is comparable to those obtained from su-

pervised pattern classification.

1. INTRODUCTION

Present helicopter power trains are significant con-

tributors to both flight safety incidents and mainte-
nance costs. Power trains comprise almost 30% of

maintenance costs and 22% of mechanically related
malfunctions that often result in loss of life and the

aircraft [1]. Future helicopters such as the LH and

fixed wing aircraft like the ATF require increased lev-
els of mission capability which cannot be met without

advancing the state of the art in fault diagnosis. Fault
diagnostic systems are necessary to detect failures in

the power train reliably and rapidly, so as to allow

scheduling of maintenance before a catastrophic fail-
ure occurs.

Fault diagnosis of helicopter gearboxes (like most ro-

tating machinery) is based upon the detection of ab-
normalities in features of vibration such as the Root

.Mean Square (RMS), Kurtosis, Skewness, etc. A con-
siderable effort has been directed towards identifica-

tion of individual features that would be affected by

specific faults in the gearbox [9]. The traditional ap-

proar.h to diagnosis has relied on human expertise
to identify the abnormai features and to relate them

to component faults. In this approach, a diagnosti-

cian would relate the abnormal features to component

faults based on the component's proximity to the sen-
sor producing the feature. Using the proximity infor-

mation, along with the information about the specific

fault that the abnormal feature represents, the diag-

nostician would hypothesize faults in various compo-

nents. The hypothesis is then verified or discarded by

examining the features from other sensors in the prox-

imity ofthe suspectcomponent. The advantage ofthe

traditionalapproach isthatitutilizesthe structureof

the gearbox to isolatefaults.Itsdisadvantages stem

from the difficultyassociatedwith identifyingabnor-

mality in featuresthat are contaminated with noise,

inadditiontoprocessingthe overwhelming number of
featuresthat are obtained from the sensors. Due to

the largenumber of featuresand sensors associated

with a gearbox, the diagnosticiancannot pay equal

attentionto all the featuresand islikelyto ignore

information that contradictsthe hypothesis.

In order to cope with noise as well as the multiplicity

of information in the features, pattern classification

through connectionist networks has been proposed as

a means to integrate the features for diagnosis [4]. In
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these networks, the connection weights which repre-

sent the decision regions for various faults are usually

formed through supervised training. Therefore, these

networks require a sample set of measurement-fault

data for training. Since such data is usually not avail-

able and is very expensive to generate, the applica-

bility of supervised networks is limited in practice.

In this paper, a diagnostic method is proposed that,

while utilizing the measurement integration capabil-
ity of connectionist networks, incorporates the prox-

irmty effect of components on sensors so as to elimi-

nate the need for supervised training. Ideally, in order

to accurately account for the proximity effect of com-

ponents on the vibration features, the strength of the

vibration signal from the components at the frequen-

des represented by the features needs to be modeled.

This requires modeling the attenuation of vibration

at these frequencies as the vibration travels from the

components to the sensors. However, such a modeling

task is difficult to perform, because: (1) the correct

values of the stiffness and damping coefficients in the

path cannot be accurately determined due to their
time-varying and non-linear nature [5,11], and (2) it

is not possible to evaluate the attenuation of vibra-

tion for the multitude of paths between components

and sensors [10,6].

As a compromise to accurate attenuation levels for in-

dividual vibration features, in the proposed method

the average attenuation of vibration across all fre-

quencies is used to represent the overall proximity

effect of gearbox components. In order to obtain the

average attenuation, the gearbox is represented by a

simplified lumped mass model, and the Root Mean

Square (RMS) value of the vibration from this model
is used to characterize the average attenuation. These

RaMS values are then used to assign structural influ-

ences representing the proximity effect of the com-

ponents on the sensors. In order to account for the
approximate nature of the simplified gearbox model,

in the proposed method the siruc_urai influences are

represented by fuzzy variables.

The structural influences only constitute the knowl-

edge of the gearbox structure. So, there is a need to

represent the relation between component faults and
vibration features separately. Since vibration features

are usually obtained at specific frequencies that are

associated with the rotational frequency of individ-

ual components [8], their relation to various compo-
nents is readily available. This relation is used to

assign the ]eatural influences representing the effect

of component faults on features. The sfructural in-

fluences and featural influenc_ are incorporated as

weights of a Structure-Based Connectionist Network

(SBCN) for diagnosis, which propagates abnormal

features through its fuzzy influence weights to cab
culate fault possibility values for each component in

the gearbox.

2. STRUCTURF__BASED

CONNECTIONIST NETWORK

The schematic of the Stracgure-Based Connectionisg

Network (SBCN) is shown in Figure 1. The inputs to
this system are the abnormal vibration features ob-

tained from processing the vibration measurements
and flagging them based on the degree of abnormal-

ity. These flagfed features are then used for both

detection and isolation of faulty components. The

task of flagging in the proposed system is performed

by the unsupervised Single Category-Based Classifier

(SCBC)[7] which classifies the features by comparing

them with their values recorded during normal oper-

ation of the gearbox. Diagnosis is performed by prop-

agating the n flagged values of the vibration features

f_(t) through the SBCN, and obtaining as outputs
the fault possibility values associated with individual

gearbox components as:

i=1

where the wit represent the weighting factors deter-

mined based on the lower and upper bounds of the

fuzzy influences (li_ and uit) between the ith sensor
and kth component as:

wit -- lit "k ('Uit -- lit )fi(t). (2)

In SBCN, in order to make uniform interpretation of

the fault possibility values pt(t), they are normalized
to have values between 0 an I as:

Pt (3)= EL,

3. EXPERIMENTAL

The effectiveness of the SBCN was demonstrated us-

ing vibration data from an OH-58A helicopter main

rotor gearbox (see Fig. 2). Vibration data was col-
lected at the NASA Lewis Research Center as part

of a joint NASA/Navy/Army Advanced Lubricants

Program. Various component failures in an OH-58A

main rotor transmission were produced during accel-

erated fatigue tests [3]. The vibration signals were

recorded from eight piezoelectric accelerometers (fre-

quency range of up to 10 KHz) using an FM tape
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Figure 1: Schematic of the Slruclure-Based

Connectionist Network (SBCN).

recorder. The signals were recorded once every hour,

for about one to two minutes per recording (using a

bandwidth of 20 KHz). Two magnetic chip detectors

were also used to detect the debris caused by compo-
nent failures.
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Figure 2: Layout of the various components in
the OH-58A gearbox. The figure also

shows division of the gearbox into

subsystems for diagnosis.

In these experiments the gearbox was run under a
constant load and was disassembled and inspected

periodically, or when one of the chip detectors indi-
cated a failure. A total of five tests were performed,

where each test was run between nine and fifteen days

for approximately four to eight hours a day. Among
the eleven failures which occurred during these tests,
there were three cases of planet bearing pitting fa-

tigue, three cases of sun gear pitting fatigue, two cases

of top housing cover cracking, and one case each of

spiral bevel pinion pitting fatigue, mast bearing mi-

cropitting, and planet gear pitting fatigue. Insofar as
fault detection during these tests, the chip detectors

were reliable in detecting failures in which a signif-

icant amount of debris was generated, such as the

planet bearing failures and one sun gear failure. The

remaining failures were detected during routine dis-

assembly and inspection.

In order to identify the effect of faults on the vibration

data, the vibration signals obtained from the five tests

were digitized and processed by a commercially avail-

able diagnostic analyzer [8]. For analysis purposes,
only one data record per day was used for each test.

Overall, fiRy four vibration features were extracted

for each accelerometer. Out of these, nineteen fea-

tures were indicators of general faults, whereas the

other thirty five features were synchronous time av-

eraged signals which related to specific gears in the

gearbox. The detailed description of these parame-

ters is included in [2].

4. RESULTS

For fault diagnosis of the OH-58A gearbox, the influ-
ences between the gearbox components and the eight

accelerometers were obtained. For this purpose, five

primary vibration travel patll_s in the gearbox were
modeled using lumped mass modeling. These paths

consisted of: (1) Duplex Bearing to Triplex Bear-

ing through Spiral Bevel mesh, (2) Duplex Bear-

ing to Ring Gear through the Sun-Planet mesh, (3)
Mast Roller Bearing to Mast Ball Bearing through

the Main Shaft, (4) Ring Gear to Mast Ball Bear-

ing through Planet Bearing, and (5) Duplex Bearing
to Mast Ball Bearing through the Sun-Planet mesh.

Based on the lumped mass model of these paths, the
KMS valueswere calculatedfor excitationsourcesat

each gearbox component. The fuzzy influencesbe-

tween each ofthe components and the accelerometers

were then obtained using theseRMS values.

Diagnosis of the OH-58A gearbox was performed in
three different hierarchies. In the top hierarchy, faults

in the three subsystems of the gearbox (see Fig. 2)

were isolated. The fuzzy influences between the three

subsystems and the eight accelerometers were ob-

tained by averaging the influences of the components

in each subsystem, as shown in Table 1, and were

incorporated as the weights of the top SBCN sub-

section. The inputs to this sub-section of SBCN were

the averaged values of all abnormal features from each
accelorometer, and its outputs were the fault possibil-

ity values for the three subsystems. In the second hi-

erarchy, faulty component families (gear and bearing)
in each subsystem were isolated. The inputs to the

SBCN in this hierarchy were eleven of the nineteen

features which were general indicators of faults, and

its outputs were the fault possibility values for gear
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andbearingfamily faults associated with the three

subsystems. For this level of diagnosis, the featural

influences (see Table 2) were scaled by the subsystem

influences and were used as the weights of the second
SBCN sub-section.

In the third hierarchy of SBCN, faults in individual

components were isolated by using the synchronous

time averaged features as inputs. Since for the OH-

58A gearbox only the features associated with gears

were available, the third sub-section of the SBCN was

designed to only isolate faults in gears. The weights
of this sub-section consisted of featural influences as-

sociated with the synchronous time averaged features

which were scaled by the subsystem influences.

I Accelerometer #

1 (Top Cover)

2 (Top Cover)

3 (Top Cover)

4 (Input Bevel Housing)

5 (Input Bevel Housing)

6 (Ring Gear Housing)

7 (Top Cover)

8 (Ring Gear Housing)

- L H

- H M

- H M

H - L

H - M

M L H

- L H

- L H

Table 1: Influences of the three subsystem on

the eight accelerometers. The influ-

ences shown are: '-' Nil, L Low, M

Medium, and H High.

Based on the three sub-sections of SBCN, fault pos-

sibility values for subsystems, component families,

and gears were obtained. In SBCN, fault isolation

is performed only when a fault is detected by the

flagging/detection stage. For brevity, only diagnostic

results from the second SBCN are presented in this

paper (see Table 3). In order to present the results in

simplified format, the fault possibility values obtained
from SBCN were hard-limited with a threshold of 0.5.

As such, the results in Table 3 only list the compo-

nent families with fault possibility values greater than
0.5. For comparison, the actual condition of the gear-

box reported from routine inspection is listed inside

brackets. It should be noted that faults may have oc-
curred earlier than they were detected. For example,

the faults in test _1 were only found upon routine

disassembly of the gearbox on day 9. These faults
had most probably occurred several days earlier, but
remained unnoticed.

The resultsinTable 3 indicatethat the SBCN identi-

fiedthe two gear family faultsin subsystems 1 and 3

Subsystem #

Feature G [ B G B G [ B

l(R) M M - M M M
2(R) M M - M M M
3(R) M M - M M M
4(R) M M - M M M
5 (G) D - - L -

6 (B) L - L - D

7 (G) D - - L

8(B) L - L - D

9 (B) H - H - H

I0 (B) H - H - H

II (B) H - H - H

Table 2: Featural influences of the gear G

and bearing B families. The influ-

ences shown are: '-' Nil, L Low, M

Medium, H High, and D Definite in-
fluences. The characters shown in

parenthesis indicate that the associ-

ated feature reflects (G) Gear faults,

(B) Bearing faults,and (R) both

gears and bearings faults.

for test #1 on days 5, 7, and 8. However, the SBCN
indicated a no-fault condition on day 6, where the

fault should have been present. This is perhaps due

to increased levels of noise in the vibration signal gen-

erated immediately after the occurrence of faults in

the gearbox, which mask the effect of fault on the vi-

bration signal. The SBCN also rnisdiagnosed faults

in bearings of subsystem I and 3 on days 5 and 7 of

test #1. This misdiagnosis is due to the presence of
abnormality in vibration features which are common

to both gear and bearing families. In test _2, the

SBCN correctly identified all nine days as normal. In

test #3, the bearing fault in Subsystem 3 was cor-

rectly identified. However, because of common gear

and bearing features, the SBCN again misdiagnosed

a gear fault on days 3 and 4. There is also a carry

over misdiagnosis from the first sub-section of SBCN
on days 3 and 4, when faults in subsystem 1 were in-

correctly diagnosed. In test #3, two bearing faults in
subsystems 2 and 3 were correctly identified on day

12, however, they were misdiagnosed as gear faults on

days 11 and 12. In test #4, the bearing fault in sub-
system 3 was correctly identified on day 10, however,

on the next day this fault was misdiagnosed as gear

fault. Also in this test a carry over misdiagnosis from
the first sub-section of SBCN in subsystem 2 appears

as a misdiagnosed bearing fault on day 12. On day

13 of test #4, even though the gearbox was supposed
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to be normal, the SBCN indicated faults in subsys-
tems 2 and 3. This is due to a new fourth planet gear

being installed on this day which caused abnormal
values in the vibration features associated with sub-

systems 2 and 3. The SBCN also correctly identified

the gear family fault in subsystem 3 on days 14 and 15
of this test. In test #5, the first 8 days were correctly

identified as normal and a gear fault in subsystem 3

was diagnosed. There was also one misdiagnesis in

subsystem 1 on day 9 of this test. In summary, this
sub-section of SBCN was able to correctly identify

normal gearbox operation on 30 of 31 days and diag-

nose all the 8 faults in the gearbox. However, it also

produced 9 misdiagnoses.

PQ, tdty C.omponent F._il:

s - (-) - (-) - (-)
2 - (-) - (-) - (-)

- (-) o (-) _s, mz(-)
G3. B3(-)

4 - (-) - (-) oz, e'l(-)
G3. ,B3.(B3)

B,_."'_ll: "(') " (')

5

. (.) _6

"., oI, BI(-) - (-) - (-)
o:j. e_,(-)

s os 6) - (-) - (-)
6_ (-)

9 - (oz) - 6) - (-)
- (a,)

1o - 6)
zx _, (-)
z2 m2 (-)

az.m3 (-)
I_ (B2)

(m_ )
14

IS

IJol6tiom for Test

_4

- (-)
- (-)
- (-)

- 6)

- 6)

- (-)
o (-)

- 6)

- 6)

ss (-)
o_. (-)

as. s2 (B3)

on, m2 (-)

a3(-)
on(on)

(-)
(*)
(*)

(-)

(-)

(-)
(*)

(-)

al,as (*)

(-)
(a3)

Table 3: Diagnosed faulty component families

for the five tests. A 'G' represents

the gear family fault, 'B' the bear-

hag family fault, and '-' denotes no
fault. The subscripts indicate the

three subsystems. For reference, the
observed faults are included inside

parentheses.

5. CONCLUSION

A diagnostic method for helicopter gearboxes is in-
troduced that uses knowledge of gearbox structure
and characteristics of the vibration features to de-

fine the influences between the features and faults.

This method brings together the diverse areas of dy-

namic modeling, fuzzy systems, and neural networks

for the purpose of modeling the gearbox structure,
representing the diagnostic knowledge and perform-

hag diagnosis, respectively. The proposed diagnostic
method was evaluated using experimental vibration
data from an OH-58A helicopter gearbox and showed

promising results. The problems that were detected
in these results relate to the fault detection phase of

the method as well as its hierarchical diagnosis pro-
cedure. Further work needs to be done in order to

finalize these aspects of the method.
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